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A Empirical Analysis

A.1 Country-specific Cross-correlations of Output with Risks

Table A.1: Cross-correlation of output gap with interest rate levels

Correlation of output gap (t) with interest rate level (t+ j)
t− 4 t− 3 t− 2 t− 1 t t+ 1 t+ 2 t+ 3 t+ 4

Argentina -0.18 -0.28 -0.39 -0.46 -0.49 -0.47 0.43 -0.35 -0.28
Brazil -0.08 -0.11 -0.09 -0.07 -0.04 0.05 0.07 0.05 0.03
Bulgaria -0.25 -0.18 -0.10 -0.03 0.09 0.12 0.15 0.17 0.13
Chile -0.09 -0.01 0.08 0.14 0.19 0.25 0.27 0.26 0.20
Colombia -0.25 -0.27 -0.27 -0.24 -0.18 -0.09 -0.05 -0.02 0.01
Ecuador -0.35 -0.44 -0.47 -0.46 -0.39 -0.32 -0.25 -0.16 -0.06
Egypt 0.12 -0.02 -0.16 -0.25 -0.30 -0.32 -0.36 -0.45 -0.49
Hungary -0.07 -0.08 -0.09 -0.10 -0.04 0.11 0.25 0.27 0.20
Indonesia -0.23 -0.34 -0.39 -0.30 -0.12 0.08 0.25 0.31 0.29
Malaysia -0.13 -0.19 -0.27 -0.35 -0.31 -0.17 -0.02 0.15 0.23
Mexico -0.07 -0.14 -0.21 -0.25 -0.18 -0.04 0.05 0.12 0.17
Peru -0.20 -0.20 -0.21 -0.18 -0.08 -0.04 0.02 0.06 0.07
Philippines 0.06 -0.01 -0.06 -0.08 -0.05 0.00 0.05 0.09 0.11
Poland 0.27 0.32 0.31 0.29 0.22 0.23 0.23 0.23 0.19
Russia 0.04 -0.05 -0.16 -0.31 -0.45 -0.47 -0.42 -0.34 -0.29
South Africa 0.12 0.07 0.05 0.07 0.13 0.19 0.23 0.24 0.23
Turkey -0.09 -0.08 -0.02 0.07 0.14 0.25 0.32 0.28 0.24
Ukraine -0.20 -0.25 -0.29 -0.37 -0.35 -0.13 0.08 0.22 0.33
Uruguay -0.22 -0.33 -0.55 -0.72 -0.73 -0.61 -0.46 -0.35 -0.26
Venezuela -0.19 -0.26 -0.29 -0.27 -0.23 -0.08 0.06 0.15 0.20
Korea -0.16 -0.31 -0.45 -0.53 -0.50 -0.42 -0.30 -0.14 -0.03
El Salvador 0.23 0.21 0.14 0.07 0.15 0.29 0.38 0.38 0.32
Dominican Republic -0.02 -0.19 -0.31 -0.44 -0.41 -0.28 0.03 0.30 0.40
Average -0.08 -0.14 -0.18 -0.21 -0.17 -0.08 0.01 0.06 0.08
90th Percentile 0.12 0.05 0.07 0.07 0.15 0.24 0.26 0.29 0.32
10th Percentile -0.25 -0.32 -0.44 -0.46 -0.48 -0.46 -0.41 -0.35 -0.28

Table A.2: Cross-correlation of output gap with interest rate volatility

Correlation of output gap (t) with volatility of interest rate (t+ j)
t− 4 t− 3 t− 2 t− 1 t t+ 1 t+ 2 t+ 3 t+ 4

Argentina -0.14 -0.18 -0.24 -0.27 -0.18 -0.15 -0.11 -0.05 -0.04
Brazil -0.22 -0.21 -0.17 -0.07 -0.01 0.00 -0.03 0.00 0.05
Bulgaria -0.16 -0.13 -0.17 -0.07 0.05 -0.01 -0.06 0.05 0.04
Chile -0.42 -0.47 -0.42 -0.35 -0.25 -0.06 0.08 0.14 0.18
Colombia -0.23 -0.33 -0.39 -0.34 -0.21 0.02 0,07 0.18 0.26
Ecuador -0.39 -0.43 -0.42 -0.32 -0.25 -0.22 -0.10 -0.01 0.03
Egypt 0.00 -0.06 -0.09 -0.10 0.00 0.07 0.09 0.12 0.12
Hungary -0.36 -0.37 -0.38 -0.38 -0.44 -0.35 -0.15 -0.04 -0.01
Indonesia -0.28 -0.34 -0.33 -0.24 -0.09 0.04 0.12 0.20 0.24
Malaysia -0.10 -0.20 -0.38 -0.53 -0.49 -0.34 -0.09 0.29 0.45
Mexico -0.24 -0.25 -0.33 -0.28 -0.06 0.10 0.13 0.12 0.12
Peru -0.23 -0.25 -0.17 -0.18 -0.05 -0.05 0.08 0.14 0.18
Philippines -0.09 -0.12 -0.19 -0.23 -0.20 -0.07 0.06 0.16 0.17
Poland 0.13 0.04 0.03 0.02 -0.05 0.06 0.14 0.12 0.12
Russia -0.06 -0.10 -0.23 -0.38 -0.44 -0.24 -0.22 -0.18 -0.16
South Africa -0.15 -0.21 -0.21 -0.16 -0.06 0.02 0.11 0.18 0.19
Turkey -0.26 -0.26 -0.17 -0.10 0.04 0.17 0.18 -0.11 -0.10
Ukraine -0.34 -0.44 -0.53 -0.56 -0.43 -0.16 0.10 0.26 0.39
Uruguay -0.29 -0.41 -0.59 -0.64 -0.61 -0.59 -0.45 -0.28 -0.08
Venezuela -0.26 -0.27 -0.24 -0.14 -0.06 0.01 0.11 0.13 0.17
Korea -0.28 -0.39 -0.58 -0.58 -0.29 -0.26 -0.13 0.13 0.32
El Salvador -0.15 -0.12 -0.06 -0.01 0.01 0.02 0.03 0.06 0.08
Dominican Republic -0.04 -0.08 -0.19 -0.18 -0.16 -0.09 -0.05 0.03 0.12
Average -0.20 -0.24 -0.28 -0.27 -0.18 -0.09 -0.01 0.07 0.12
90th Percentile -0.04 -0.09 -0.11 -0.07 0.01 0.07 0.13 0.19 0.31
10th Percentile -0.35 -0.42 -0.51 -0.55 -0.44 -0.32 -0.15 -0.10 -0.07
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A.2 Interest Rates, Volatility, and Market Sentiment

In this appendix we explain the decomposition we rely on to argue that part of movement in

the level and volatility of interest rates is driven by an external market sentiment factor, and

can therefore be considered partly exogenous.

The interest rate at which a country borrows overseas can be decomposed into a baseline

“risk-free” global interest rate—typically that of US government bonds—and a country-specific

spread that reflects the risk premium charged by international investors. The risk-free component

can be considered fully exogenous to any particular EME, as most of these countries are not

large enough to unilaterally affect the international cost of borrowing. However, only a very

small fraction of the volatility of interest rate in EMEs comes from the risk-free component. In

fact, Fernández-Villaverde et al. (2011) estimate the stochastic volatility processes of both the

risk-free and country spread components for four Latin American countries and find that the

volatility of the risk-free rate is about an order of magnitude smaller than that of the country

spread. In addition, they find a higher degree of time-variation in the country-spread volatility

rather than in the risk-free rate volatility for all countries in their sample.

Regarding country spreads, the direction of causality can be twofold (see Uribe and Yue

(2006) for a detailed discussion). On the one hand, Eichengreen and Mody (1998) show evidence

that economic fundamentals are reflected on country spreads, especially on their cross-country

levels. On the other hand, the authors also show that the time-variation of country spreads is

largely unrelated to changes in economic fundamentals, and responds to a large extent to shifts

in market sentiment. In that same vein, Uribe and Yue (2006) estimate a structural VAR for

economic and financial variables on a panel of EMEs and find that 60 percent of the variation

in country spreads is explained by the country spread shock itself (i.e., independent of other

“fundamental” shocks impacting the economy). More recently, Longstaff et al. (2011) show that

there is a common underlying factor that drives 64 percent of the variation in country spreads in

a sample of 26 emerging and developed countries. They use credit default swap (CDS) instead

of bond spreads as the earlier literature does, but the interpretation of the results is equivalent.

As previously explained, we follow Longstaff et al. (2011) in identifying common latent

factors in cross-country spreads using principal component analysis (PCA), but we run this

on our EME bond data instead. We select a subsample of 13 countries that have long-enough

country spread data to conduct this analysis, though we verify afterwards that results are

qualitatively the same on the full country sample for the periods in which the data is balanced.

We run the PCA on standardized monthly changes of the country spread only, since we already

know that the risk-free rate component is a common factor across countries and it has relatively

low degree of time-variability.

We find that the first principal component explains 57 percent of variation in country spreads

in our sample and refer to it as the common market sentiment shock like the one described by

Eichengreen and Mody (1998). The subsequent principal components explain a much smaller
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Figure A.1: Rolling volatility of market sentiment factor versus US equity implied volatility
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fraction of overall variability (less than 8% each individual one), and have a less straightforward

interpretation.

We argue that the market sentiment factor we extract from EMEs country spreads does not

uniquely reflect market sentiment regarding EMEs assets, but rather, that it captures broad

financial market risk appetite. In Figure A.1, we overlay a gray dotted line of the implied

volatility in S&P100 options (the VXO index, analogous to the VIX for the S&P500 index),

which is typically considered to reflect broad market risk appetite. Whenever the VXO spikes

up, the cost of hedging against moves in US equity prices increases, representing a higher degree

of risk aversion. In our sample, the VXO is very highly correlated with the rolling volatility

of the EME market sentiment factor. Most spikes tend to take place at the same time, and

periods of steady low implied volatility in US equities (e.g., 2003-2007 and 2013-2015) tend to

also display low realized volatility in the EME market sentiment factor. The overall correlation

is 0.62, but it increases to 0.79 if we remove the 1998 episode that seems to be more centered on

EMEs rather than broad risk assets.1

1The magnitude of the 1998 spike in the EME market factor volatility could also be due to lack of liquidity,
as the EME bond market was not very developed at that point in time.
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A.3 Output Gap around Sudden Stops

Figure A.2: Output gap (t denotes the initial month of a sudden stop)
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B Social Planner’s Recursive Problem

We consider a social planner that lacks commitment and that can only choose aggregate bond

holdings for households but is still subject to the borrowing constraint. Following Klein et al.

(2005), in order to solve for the time consistent policy, we focus on Markov stationary policy rules

that only depend on the current state of the economy. In particular, they only depend on the

aggregate state of the economy, (B,X). We solve for the constrained efficient allocation following

the three steps described in Klein et al. (2005): (i) We first define a recursive competitive

equilibrium for arbitrary policy rules; (ii) we then proceed to define a constrained-efficient

allocation for arbitrary policy rules of future planners; and (iii) we define the constrained

efficient allocation for the case in which such policies are time consistent, that is, we solve for

the fixed point of the game being played by successive planners. In this problem, the social

planner makes the borrowing decisions for the households, so the planner is the one facing

the collateral constraint. Households are allowed to trade stocks of the tree freely without

government intervention.

Let us consider a planner who chooses an arbitrary sequence of state-contingent lump-sum

transfers, {Tt}∞t=0. Given this sequence of transfers, we can write down the Bellman equation

for the household’s problem as follows:

V A (s, T,X) = max
c,s′

{
u (c) + βE

[
V A (s′, T ′, X ′) |X

]}
(22)
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subject to

c+QA (T,X) s′ =
[
QA (T,X) + d (X)

]
s+ T. (23)

When solving this problem, the household takes the pricing function, QA (T,X), and the

sequence of transfers as given. The solution to this problem is characterized by a policy rule for

stock holdings, sA (s, T,X), such that Euler equation for stock holdings holds,

QA (T,X) =
βE
[
u′ (c′)

(
QA (T ′, X ′) + d (X ′)

)
|X
]

u′ (c)
, (24)

where

c+QA (T,X) sA (s, T,X) =
[
QA (T,X) + d (X)

]
s+ T. (25)

Notice that the resource constraint of the economy implies that T = B − B′

1+r
. Hence, given

B, the planner actually chooses T by choosing B′. Therefore, we can rewrite the planner’s

policy rule as one that dictates B′ as a function of the current aggregate state, (B,X). Call

this policy rule Ψ (B,X), and define the following functions:

Q (B,X) ≡ QA
(
B − Ψ (B,X)

1 + r
,X

)
,

s (s, B,X) ≡ sA
(
s, B − Ψ (B,X)

1 + r
,X

)
, and

V (s, B,X) ≡ V A

(
s, B − Ψ (B,X)

1 + r
,X

)
.

We can rewrite the optimality conditions for the household’s problem as follows:

Q (B,X) =
βE [u′ (c′) (Q (B′, X ′) + d (X ′)) |X]

u′ (c)
, (26)

where

c+Q (B,X) ŝ (s, T,X) = [Q (B,X) + d (X)] s+B − Ψ (B,X)

1 + r
. (27)

We can now define a recursive competitive equilibrium for an arbitrary policy rule Ψ (B,X).

Definition 2 A recursive competitive equilibrium for an arbitrary policy rule Ψ (B,X) consists

of a pricing function, Q̂ (B,X), and decision rules for households, ŝ (s, B,X), with associated

value function V̂ (s, B,X), such that:
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1. Given Ψ (B,X) and Q̂ (B,X), households’ decision rules ŝ (s, B,X) and the associated

value function V̂ (s, B,X) solve the recursive problem of the household.

2. Markets clear: Q̂ (B,X) is such that ŝ (s, B,X) = 1 and the resource constraint holds:

c+ B′

1+r
= B + d (X), where B′ = Ψ(B,X).

The definition of such an equilibrium implies that the following set of equations must be

satisfied:

Q̂ (B,X) =
βE
[
u′
(
B′ + d (X)− B′′

1+r

) [
Q̂ (B′, X ′) + d (X ′)

]
|X
]

u′
(
B + d (X)− B′

1+r

) , (28)

B′ = Ψ (B,X) , and (29)

B′′ = Ψ (Ψ (B,X) , X ′) . (30)

Given that the planner we consider can only affect the allocation of bond holdings but cannot

directly intervene in the markets for stocks, the pricing condition for Q̂ (B,X) has to hold in a

constrained efficient allocation; in particular, this condition defines the price at which lenders

value collateral in the current period borrowing constraint. Taking into account this kind of

implementability constraint for the planner, we can now define the problem to be solved by a

planner that takes as given the policy functions of future planners. Given future policy rules,

Ψ (B,X), associated pricing function Q̂ (B,X), and consumption rule C (B,X), the current

planner chooses current consumption, c, and future bond holdings, B′, to solve the following

Bellman equation:

W (B,X) = max
c,B′
{u (c) + βE [W (B′, X ′) |X]} (31)

subject to

c+
B′

1 + r
= d (X) +B, (32)

− B′

1 + r
≤ κQ̃(c, B′, X), (33)

where

Q̃(c, B′, X) =
βE [u′ (C (B′, X ′)) (Q (B′, X ′) + d (X ′)) |X]

u′ (c)
, and (34)

C (B′, X ′) = d (X ′) +B′ − Ψ (B′, X ′)

1 + r′
. (35)

Definition 3 A constrained efficient allocation given a policy rule for future planners Ψ (B,X),

with associated pricing function Q̂ (B,X) and consumption rule C (B,X), consists of an optimal
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policy rule, Ψ̂ (B,X), such that given functions Ψ (B,X), Q̂ (B,X) and C (B,X), the current

policy rule B′ = Ψ̂ (B,X) and associated value function Ŵ (B,X) solve the recursive problem

of the current planner.

By substituting (32) and (35) into (34), we can define the pricing function in terms of present

and future aggregate bond holdings, (B,B′), as follows

Q̄ (B,B′, X) = βE

 u′
(
B′ + d (X ′)− Ψ(B′,X′)

1+r′

)
[Q̂ (B′, X ′) + d (X ′)]

u′
(
d (X) +B − B′

1+r

)
∣∣∣∣∣∣X
 . (36)

Then, substituting (36) into (33), the first order conditions for the recursive problem of the

current planner imply that Ψ̂ (B,X) has to be such that the generalized Euler equation holds:

u′(Ĉ (B,X)) − µ̂ (B,X) [1 + κ (1 + r) ξ (B,X)] (37)

= (1 + r) βE [u′(C(B′, X ′)) + κµ̂(B′, X ′)ψ(B′, X ′)|X] ,

where ψ (B,X) = ∂Q̄(B,Ψ(B,X),X)
∂B

, ξ (B,X) = ∂Q̄(B,Ψ(B,X),X)
∂B′

, and Ĉ (B,X) = B + d (X)− Ψ̂(B,X)
1+r

.

The multiplier on the collateral constraint is given by

µ̂(B,X) = max

{
0,

1

1 + κ(1 + r)ξ(B,X)

[
u′

(
B + d(X)− Ψ̂(B,X)

1 + r

)

− β (1 + r)E [u′ (C (B′, X ′)) + κµ̂ (B′, X ′)ψ (B′, X ′) |X]

]}
, (38)

where Ψ̂ (B,X) = − (1 + r)κQ̄(B,Ψ (B,X) , X).

Hence, we obtain that the functions that solve the planner’s problem, c = Ĉ(B,X) and

B′ = Ψ̂(B,X), must satisfy the following condition:

u′(Ĉ(B,X)) − µ̂(B,X) [1 + κ(1 + r)ξ(B,X)] (39)

= (1 + r)βE [u′(C(B′, X ′)) + κµ̂(B′, X ′)ψ(B′, X ′)] ,

where

ψ(B,X) =
∂Q̄(B,Ψ(B,X), X)

∂B
, (40)

ξ(B,X) =
∂Q̄(B,Ψ(B,X), X)

∂B′
, and (41)

C(B,X) = B + d(X)− Ψ(B,X)

1 + r
. (42)

Given the characterization of the allocation, we can now define a recursive constrained
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efficient allocation.

Definition 4 The recursive constrained efficient allocation consists of functions Ψ (B,X),

Q̂ (B,X), C (B,X), and Ψ̂ (B,X) with associated value function, Ŵ (B,X), such that

1. Q̂ (B,X), C (B,X), Ψ̂ (B,X), and the associated value function Ŵ (B,X), constitute a

constrained efficient allocation, given a policy rule for future planners, Ψ (B,X).

2. The planner’s plans are time-consistent: Ψ̂ (B,X) = Ψ (B,X) and Q̄(B, Ψ̂(B,X), X) =

Q̂(B,X).

B.1 Derivation of equations (15) and (19)

Non-binding current collateral constraint: µ (B,X) = 0 Given our definition of Q̄ (B,B′, X),

notice that

∂Q̄ (B,B′, X)

∂B
= βE

−u
′ (C (B′, X ′))

(
Q̂ (B′, X ′) + d (X ′)

)
u′ (c)

u′′ (c)

u′ (c)


= −u

′′ (c)

u′ (c)
Q̄ (B,B′, X) ,

which implies that

ψ (B,X ) = −u
′′ (C (B,X ))

u′ (C (B,X ))
Q̂ (B,X ) .

Therefore, when µ (B,X) = 0, condition (37) becomes an Euler equation with one wedge, µ,

u′
(
Ĉ (B,X)

)
= (1 + r)βE

[
u′
(
C
(
B′, X ′

))
− κµ̂

(
B′, X ′

) u′′ (C (B′, X ′))

u′ (C (B′, X ′))
Q̂
(
B′, X ′

)
|X
]
,

precisely as in equation (19).

Binding current collateral constraint: µ (B,X) > 0 First note that the current planner

has to choose B′ subject to the collateral constraint

B′

1 + r
+ κQ̄ (B,B′, X) ≥ 0. (43)

Following Jeanne and Korinek (2018), note that if the left-hand side of the previous inequality

is strictly increasing in B′, then, for any given B, there is a unique B′ such that this equation

holds with equality. Call this B̄′. Hence, for every (B,X), there exists a B̄′ such that
B̄′

(1+r)
+ κQ̄(B, B̄′, X) = 0. Hence, when the collateral constraint is binding, the optimal
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policy rule by the current planner must be such that Ψ̂(B,X) = B̄′, and we obtain that
Ψ̂(B,X)

1+r
+κQ̄(B, Ψ̂(B,X), X) = 0. Hence, this policy rule is unique, implying that ξ (B,X) = 0.2

Now, notice that the left-hand side of (43) is strictly increasing whenever

∂

∂B′

(
B′

1 + r
+ κQ̄ (B,B′, X)

)
=

1

1 + r
+ κξ (B,X) > 0 (44)

which is precisely our assumption in footnote 7, 1 + κ (1 + r) ξ (B,X) > 0.

In equilibrium, ξ (B,X) < 0, therefore we expect this condition to hold whenever κ is a

small number.3 Given the definition of Q̄ (B,B′, X), notice that

∂Q̄ (B,B′, X)

∂B′
=
βE [Ω (B,B′, X)]

u′ (c)
+
u′′ (c)

u′ (c)

Q̄ (B,B′, X)

1 + r
(45)

where

Ω(B,B′, X) = u′′(C(B′, X ′))∂C(B
′, X ′)

∂B
[Q(B′, X ′) + d(X ′)] + u′(C(B′, X ′))∂Q(B′, X ′)

∂B
.

This last expression shows how the current planner takes into account how decisions affect future

planners’ actions by changing B′.

C Numerical Solution Method

We use a grid of 500 points for household savings, placing 80 percent of them around the region

where the borrowing constraint binds in order to better capture the nonlinearities of the model.

We truncate the grids in order to include 95 percent of the probability mass of shocks at the

ergodic distribution, which was approximated by simulating the VAR for 1 million periods.

To solve the system of rational expectations with occasionally binding constraints, we use an

adaptation of the endogenous grid method of Carroll (2006). This appendix describes in detail

our algorithm.

C.1 Competitive equilibrium

Let us denote by B the aggregate equilibrium savings of the economy, and by X = (z, r, σr)

the realization of exogenous shocks. We wish to find functions B(B,X), C(B,X), Q(B,X) and

2Another way to show this is by substituting the pricing function Q for the actual values q̄ = Q̄(B, B̄′, X),
which would imply that the constraint no longer depends on B′.

3Notice that when κ is small enough, the term κµ (B′, X ′)ψ (B′, X ′) also becomes very small and Ψ̂ (B,X)
is unique in the case in which µ (B,X) = 0.
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µ(B,X) that satisfy

u′(C(B,X)) = β(1 + r)E [u′(C(B(B,X), X ′))|X] + µ(B,X), (46)

C(B,X) +
B(B,X)

1 + r
= d(X) +B, (47)

−B(B,X)

1 + r
≤ κQ(B,X), (48)

Q(B,X) = βE
[
u′(C(B(B,X), X ′)) [Q(B(B,X), X ′) + d(X ′)]

u′(C(B,X))− κµ(B,X)

∣∣∣∣X] , (49)

(50)

We extend the endogenous grid method (EGM) of Carroll (2006) to our framework where

there is a borrowing constraint that binds occasionally:

1. For each σr ∈ {σrL, σrH} ≡ S, calculate the transition matrix for a discrete approximation

to the VAR(1) process of (z, r) over Z×R, with Z = {z1, . . . , zNz} and R = {r1, . . . , rNz}.

2. Generate a grid B̄ = {b1, b2, . . . , bN}, and an extended grid

¯̄B = B̄ ∪ {bN+1, bN+2, . . . , bN+M},

where bN+M is chosen such that the resulting maxX B(bN , X) ≤ bN+M (to be verified in

the end).

3. Guess functions C1(B,X), Q1(B,X) and Qc1(B,X), for every (B,X) ∈ ¯̄B × Z ×R× S.

The initial guess we use is

C1(B,X) = d(X) +B

(
1− 1

1 + r

)
,

Q1(B,X) =
β

1− β
d(X),

which corresponds to the assumption that B(B,X) = B, z′ = z and r′ = r for all (B,X).

4. Set C0(B,X) = C1(B,X) and Q0(B,X) = Q1(B,X) for each (B,X) ∈ ¯̄B × Z ×R× S.

5. Assume that (48) does not bind. Use (46) and (47) to calculate

Ĉ(B′, X) = u′
−1

(β(1 + r)E [u′(C0(B′, X ′))|X]) ,

B̂(B′, X) = Ĉ(B′, X) +
B′

1 + r
− d(X).

Notice that B̂ is the level of contemporaneous savings that yield an optimal savings decision

B′ when the realization of shocks is X and the borrowing constraint does not bind.
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6. For each X, let us denote by
¯̂B(X) the endogenous grid of points generated by B̂(B′, X).

For every X, interpolate B′ from B̂(B′, X) to B̄, and denote the resulting function B̌(B,X).

7. Calculate B̃(B,X) = max{B̌(B,X),−κ(1 + r)Q0(B,X)}, and the corresponding con-

sumption:

C̃(B,X) = d(X) +B − B̃
′(B,X)

1 + r
.

8. Find B∗(B,X) = min{B ∈ ¯̄B : B ≥ B̃(B,X)}. Using (46) and (49) find

µ̃(B,X) = u′(C̃(B,X))− β(1 + r)E [u′(C0(B∗(B,X), X ′))|X] ,

Q̃(B,X) = βE
[
u′(C0(B∗(B,X), X ′)) [Q0(B∗(B,X), X ′) + d(X ′)]

u′(C̃(B,X))− κµ̃(B,X)

∣∣∣∣X] ,

9. For every (B,X) ∈ B̄ × Z ×R× S, update

C1(B,X) = αC̃(B,X) + (1− α)C0(B,X),

Q1(B,X) = αQ̃(B,X) + (1− α)Q0(B,X)

for some α ∈ (0, 1]. For B ∈ ¯̄B\B̄, set C1(B,X) = C1(bN , X) and Q1(B,X) = Q1(bN , X).

10. Repeat steps 4-9 until convergence.

C.2 Constrained efficient allocation

The constrained efficient allocation satisfies

u′(C (B,X))− µ (B,X) [1 + κ (1 + r) ξ (B,X)] (51)

= (1 + r) βE [u′(C(B′, X ′)) + κµ(B′, X ′)ψ(B′, X ′)|X] ,

Q(B,X) = βE
[
u′(C(B(B,X), X ′)) [Q(B(B,X), X ′) + d(X ′)]

u′(C(B,X))− κµ(B,X)

∣∣∣∣X] , (52)

together with (47) and (48). Some steps of the EGM algorithm change with respect to the

solution of the competitive equilibrium:

3. Guess functions C1(B,X), Q1(B,X) and µ1(B,X) for every (B,X) ∈ ¯̄B × Z × R × S.

The initial guess we use is: µ1(B,X) = 0.

4. Set C0(B,X) = C1(B,X), Q0(B,X) = Q1(B,X) and µ0(B,X) = µ1(B,X) for each

(B,X) ∈ ¯̄B × Z ×R× S.

12



Calculate:

ψ(B,X) = −u
′′(C0(B,X))

u′(C0(B,X))
Q0(B,X).

Use the numerical derivatives of C0 and Q0 with respect to B to calculate ξ(B,X) using

equation (45) of Appendix B.

5. Assume that (48) does not bind. Use (51) and (47) to calculate:

Ĉ(B′, X) = u′
−1

(β(1 + r)E [u′(C0(B′, X ′)) + κµ0(B′, X ′)ψ(B′, X ′)|X]) ,

B̂(B′, X) = Ĉ(B′, X) +
B′

1 + r
− d(X).

8. Find B∗(B,X) = min{B ∈ ¯̄B : B ≥ B̃(B,X)}. Using (51) and (52), find:

µ̃(B,X) =
1

1 + κ(1 + r)ξ(B,X)

{
u′(C̃(B,X))

− β(1 + r)E [u′(C0(B∗(B,X), X ′)) + κµ0(B∗(B,X), X ′)ψ(B∗(B,X), X ′)|X]
}
,

Q̃(B,X) = βE
[
u′(C0(B∗(B,X), X ′)) [Q0(B∗(B,X), X ′) + d(X ′)]

u′(C̃(B,X))− κµ̃(B,X)

∣∣∣∣X] ,

9. For every (B,X) ∈ B̄ × Z ×R× S, update:

C1(B,X) = αC̃(B,X) + (1− α)C0(B,X),

Q1(B,X) = αQ̃(B,X) + (1− α)Q0(B,X)

µ1(B,X) = αµ̃(B,X) + (1− α)µ0(B,X).

for some α ∈ (0, 1]. For B ∈ ¯̄B\B̄, set C1(B,X) = C1(bN , X), Q1(B,X) = Q1(bN , X) and

µ1(B,X) = µ1(bN , X).

10. Repeat steps 4-9 until convergence.

D Three-Period Model

In this appendix we consider a simple three-period version of our model to focus on understanding

how a increasing mean preserving spreads in interest rates can generate an increase in borrowing

depending on the current level of interest rates.

Consider a three period model, t = 1, 2, 3, and let Rt ≡ 1+rt. Household i chooses {ci,t}t=1,2,3
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and {bi,t+1, si,t+1}t=1,2 to maximize

u (ci,1) + βu (ci,2) + β2u (ci,3)

subject to

ci,1 + q1si,2 +
bi,2
R1

= (1− α) d1 + (q1 + αd1) si,1 + bi,1

ci,2 + q2si,3 +
bi,3
R2

= (1− α) d2 + (q2 + αd2) si,2 + bi,2

ci,3 = (1− α) d3 + αd3si,3 + bi,3

and

−bi,2
R1

≤ κq1si,2

−bi,3
R2

≤ κq2si,3

where d1 = d2 = d3 = 1, R1 = R̄ and R2 = R̄+ x with probability 1
2

and R2 = R̄− x with equal

probability, where x > 0. Hence, E[R2] = R̄ and V[R2] = x2, and an increase in x represents a

mean preserving spread for the interest rate in period 2. Assume that u (c) = c1−γ

1−γ .

Period 3 At t = 3, aggregate consumption is given by c3 = d3 + b3 = 1 + b3.

Period 2 At t = 2, household i chooses ci,2, bi,3 and si,3 such that

c−γi,2 − µi,2 = βR2c
−γ
i,3

q2 = α
c−γi,3

c−γi,2

where µi,2 = 0 if the collateral constraint is not binding. In order to simplify our analysis, let us

assume that parameter values are such that the collateral constraint is not binding in t = 1, 2.

If the collateral constraint is not binding in t = 2, then aggregate consumption and b3 are

determined by the following two equations

c2 = (βR2)−
1
γ (1 + b3)

c2 = 1 + b2 −
b3

R2

.

Let wt ≡ 1 + bt denote wealth in period t = 1, 2, 3. Solving for c2 as a function of w2 we
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obtain that

c2 = w2 −
1

R2

(βR2)1− 1
γ + βR2w2

(βR2)1− 1
γ + β

.

and q2 is simply given by q2 = α
(

1+b3
c2

)−γ
. Notice that that c2 depends on interaction between

w2 and R2. Moreover, w2 is in turn a function of R1.

Period 1 At t = 1, household i chooses ci,1, bi,2 and si,2 to satisfy

1 = βR̄
E
[
c−γi,2
]

c−γi,1
(53)

and asset prices are simply given by q1 =
c−γi,2 (q2+α)

c−γi,1
.

The intuition typically used to explain the effects of an increase in the volatility of interest

rates goes as follows. Consider the first equation. If R2 is more volatile, then c2 is more volatile

and by Jensen’s inequality it must be the case that E
[
c−γi,2
]

increases, and therefore ci,1 must

decrease given that R̄ is fixed. Hence, households increase their savings (Fernández-Villaverde

et al., 2011). However, notice that this logic—in particular Jensen’s inequality—only holds as

long as E [ci,2] stays relatively constant for the different volatilities of interest rates. If somehow,

E
[
c−γi,2
]

decreases because E [ci,2] increases, then this result does no longer hold.

Now consider

E
[
c−γi,2
]

=
1

2

w2 −
1

R̄ + x

(
β(R̄ + x)

)1− 1
γ + β(R̄ + x)w2(

β(R̄ + x)
)1− 1

γ + β

−γ

+
1

2

w2 −
1

R̄− x

(
β(R̄− x)

)1− 1
γ + β(R̄− x)w2(

β(R̄− x)
)1− 1

γ + β

−γ .
Differentiating the previous expected value with respect to x, it can be shown that the sign of
∂
∂x
E
[
c−γi,2
]

depends on the value of w2. For instance, for γ = 2, β = 0.96, R̄ = β−1, one obtains

that

∂

∂x
E
[
c−γi,2
]
< 0 for w2 = 0.8 and

∂

∂x
E
[
c−γi,2
]
> 0 for w2 = 0.1.

Lastly, notice that if the substitution effect dominates the wealth effects in period 1, then
∂w2

∂R1
> 0. Hence, higher interest rates in period 1 can generate enough wealth in t = 2 such

that households actually decide to adjust and decrease savings for higher levels of volatility of
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interest rates as we discussed in section 4: saving more is not a good vehicle to insure against

risks and bonds become riskier as an asset.

E CDF of Optimal Taxes under High and Low Volatility

Figure E.3: Cumulative Distribution Function of Optimal Taxes
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• Statistics derived from model simulations:

– Probability of zero tax given low volatility: 42.65%

– Probability of zero tax given high volatility: 47.90%

– Average tax (excluding zeros) given low volatility: 16.47%

– Average tax (excluding zeros) given high volatility: 15.78%
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